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Abstract

Weconsideranactiveinformationsystem,which aimsto
notifya travelertimelyabouta likelydelay. Besidesprovid-
ing theright content,it shouldalsowait for thebesttimefor
notification. This is especiallytrue for mobileinformation
services,whereeverynotificationmayirritate therecipient.

We formulateand solvesuch a probleminvolving best
choicesbothfor contentandtimeof notificationby model-
ing it as an influencediagram. Thechosenexamplestems
fromthedomainof personaltravelassistance.

Notethat theactionof thetraveleris nothingelsethana
reactionto thenotificationfromtheinformationsystem.

1 Intr oduction

We aim to give a formal representationfor a common
but apparentlynot yet formalizeddecisionproblem.An in-
formation system(IS) providing timely notificationsto a
recipientfacesthe following task. Not only is it necces-
sary to decideon the bestnotification contentat a given
moment,but the IS mustalsodecidewhetherto sendthe
notificationright away or to wait until later in orderto de-
cide on the notification contentwith improved precision.
This is especiallytrue for mobile or active decisionsup-
port. Relatedwork includesMixed-Initiative-Assistance
(cf. Fergusonet al. [5] andHorvitz [7]) andJust-In-Time-
Information-Retrieval (JITIR) agents(cf. Rhodes[9]). A
researchprojecton informationlogisticsat theFhG-ISST1

specificallyaddressestheaspectof timely notification.
We considerthe domainof personaltravel assistance.

1FraunhoferGesellschaft- Institut für Software- und Systemtechnik
(Germany).

Currently, the traveler consultsan informationsystemfor
the bestroutebeforehe startshis journey andfollows this
routeuntil hereacheshisdestination.However, delaysmay
changetheoptimal routeduringthetrip. This is especially
truewhenpartsof the routesareservedby differenttrans-
port providers,andconnectingvehiclesmaynot wait for a
delayedpassenger. Therefore,travelersmustbe informed
aboutdelaysand alternative routesduring their trip. The
problemhereis that delaysarenot certainin advanceand
earlywarningscouldbemisleading.

Thefollowing examplewill bestudiedin thisarticle.

A traveler may reachhis final destinationon two dis-
tinct routes. The first route (by train) is consideredto be
fasterthanthe secondroute(by taxi), but the latter is usu-
ally available without waiting, while the train may arrive
late,causingthetravelerto wait inefficiently.

Thetravelerhasnot yetdecidedwhich routeto take,but
will chooseeitherof themwith equalprobabilityunlessoth-
erwisenotifiedin timeby theIS.

We will model the decisionof the IS about time and
contentof the notificationto be sentto the traveler. More
specifically, we will decidewhether to provide the best
routenow or to wait to providea betterroutelater.

Theassumptionhereis thatthereis just onenotification
of thetraveler. In otherreal-world problems,thisconstraint
mustbe relaxed. In any case,extra notificationsshouldbe
avoided.

2 Problem Formulation

Reasoningaboutthebesttimeandcontentis anon-trivial
task.Thea-posteriorianalysismayprove thea-priori deci-
sion to be ultimately wrong. In our example,the time of
train departureinfluencesthebenefitof taking thetrain. A



notificationsupportingthe traveler’s decisionfor the right
modeof transportshouldbesentbeforethetrain leavesthe
station.

Uncertaintywill bemodeledby probability theory, thus
we employ randomvariables.Thefollowing pointsof time
mustbeconsidered.

��������	�
��� , thecurrenttimeor clock reading

����� , therealdeparturetimeof thetrain

������ , thescheduledtime for thetraindeparture

��� �� , thetime of travelernotification

Weintendto usetime-dependentprobabilitiesthatdonot
refer to absolutetimes. Instead,theseprobabilitiesdepend
on the temporaldistancefrom the scheduledtime for the
traindeparture.Thereforeall timevariableswill bedefined
asfollows.

� Clock � ����������� ������	������� ���� , the (relative) currenttime
or clock reading

� Delay �  � � � � � �� , the(relative)departuretimeof the
train

� Notificationtime � � � ���� � ���� , the(relative) time of
travelernotification

Besidecontinuoustime variablesthe following discrete
variablesare needed(possiblevaluesare given in curly
brackets):

K( � ) � delay,unknown� , the knowledgeof the IS at time �
on the delayof the train. For K( � )=delay, the train is
known to be delayed,otherwisethe IS hasno knowl-
edgeaboutwhetherthetrain is delayedor not;

Weather� sunny,rainy� , anexternalinfluenceonthedepar-
turetime. Weatherservesasa representative example
for otherexternalinfluencesaswell;

Timely � yes,no� , denotingthetimely or latearrival of the
notificationwith thetraveler. (only timely notifications
areeffective)

Content� take train,take taxi,none� , thecontentof theno-
tification to besentto thetraveler;

Action � takes train,takes taxi � , the action taken by the
traveler.

Theproblemconsideredin thisarticlecanbestatednow
asfollows. For eachpoint in time ��������� �!� ���	�����#" , thestate
space$ is the crossproduct ����� � K( � ) "&% �����'� Weather"
andthe decisionspace( is the crossproduct ����� �!� �)")%�*���'� Content" . For a given state + � $ , the bestdecision�,� ( is theonewith optimalexpectedreward. Theinflu-
encesbetweenvariablesandrewardaredescribedbelow.

2.1 Reward basedon Action and Delay

Bothtraindelayandtheactionto betakenby thetraveler
influencetherewardof thenotification. Therewardcould,
for instance,representthelikelihoodof thetraveler’sarrival
in time. In order to exclude trivial cases,we requirethe
existenceof two distinct train delays ��- and �/. , suchthat
differentactionshave to betakenby thetravelerin orderto
maximizethereward,i.e.:
Reward(takestrain,��- ) 0 Reward(takestaxi,��- ) 1
Reward(takestrain,� .  ) 2 Reward(takestaxi,� .  )
This means,that thereis no traveler actionthat dominates
theotheronefor all possibledelays�  .
2.2 Delay influencesKnowledge

The delay �  is relatedto the currentknowledgeK( � )
aboutthis delay. The IS changesits knowledgedueto ex-
ternalinformationprocesseswhich arenot underconsider-
ationhere.Thefollowing assumptionsaremade:

1. K( � ) is unknownuntil somepoint in time �43 (flipping
time),whereit flips to delay. It neverflips back.

2. If K( � ) flips to valuedelay, thenthe train mustbe de-
layed,i.e. K( � )=delayis freeof error.

3. If the train is delayed( �  265 ), thenflipping time �43
anddelay �  are independent,i.e. the delaydoesnot
influencethetime theIS maylearnaboutthis delay.

7 �8� "9�;: �8� 3=< �?>��  2@5 " is thedistributionfunctionof
theflipping time � 3 (a randomvariable)giventhat �  2A5 .7 �8� " is theprobabilityof K( � )=delaygiventhat thetrain is
delayed( �  2@5 ).
2.3 Action basedon Timelinessand Content

As arguedin the introduction,timelinessof notification
maybeinfluencedby many factors.Herewe areprimarily
interestedin theaspectof effectiveness,i.e. whetheror not
theactioncanbechosenafternotification. Thereis a criti-
cal timeafterwhichnotificationbecomesineffective. In our
setting,thiswouldbethetimewhenthetravelerchoosesbe-
tweentwo alternative actionswhich exclusively leadeither
to takestrain or takestaxi.



3 The Model

We model the decisionproblemwith an influencedia-
gram. Influencediagramsare directedgraphswith three
typesof nodes(cf. Shachter[11] andPearl[8]). Chance
nodes(shown asovals) representuncertainquantities,de-
cision nodes(shown as rectangles)representpossiblede-
cisions and value nodes(shown as diamonds)represent
rewards and costs for decisionsand outcomesof uncer-
tain quantities. Directed links leading to chancenodes
denoteconditional dependency, directedlinks leading to
value nodesdenote functional dependency and directed
links leadingto decisionnodesare informational,i.e. the
respective quantityis known beforethe decisionhasto be
made.For demonstrationpurposes,discretepointsin time
wereusedinsteadof continuoustime.PSfragreplacements
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Figure 1. The influence diagram

The influencediagramfor the exampleis shown in fig-
ure 1. First, a shortdescriptionof the nodesis given, in-
cludingthevariableswhichhavebeenintroducedbefore(cf.
Section2 for details).

ChanceNodes:

Action � takestrain/takestaxi � , theactionof thetraveler.

Weather � sunny/rainy� , the external influence of the
weather.

Timely � yes/no� , timelinessof notificationis modeledby
this chancenode. Only timely information may in-
fluence the Action of the passenger. Timelinessis
guaranteedfor early information and impossiblefor
late information. For timely information, timeliness
is reachedwith highprobability.

K ���	�
��� � delay/unknown� , the IS knowledge at current
(clock) time.

K � � delay/unknown� , the(expected)IS knowledgeat no-
tification time.

� ���	�
��� � -20/-10/0 � , thecurrentclock time. Thevaluesmay
beinterpretedasminutes.

Delay � in time/delayed� , thetraindelay. Delay �  hasbeen
replacedby thisdiscretetwo-valuedvariable2.

DecisionNodes:

� � � -20/-10/0 � , thetimeof notification.

Content � take train/take taxi/none� , the notificationcon-
tent.

Value Nodes:

Reward, therewardgivenon timely arrival.

Penalty, a valuenodeto ensuretemporalconsistency (see
below).

The existenceof most links follows directly from the
discussionin Section2.1-2.3andwill becontinuedin Sec-
tion 3.1-3.4for aconcreteprobleminstance.Thefollowing
commentsconsidertheremainingissues.

Sincewe considertwo differentpointsin time, we also
needto representtheIS knowledgefor bothpointsin time.� ���	�
��� and � � can be viewed as parameterson the condi-
tional distributionsof K ��������� andK � (cf. Section3.2). K �
separatesK ���	�
��� from Delay, sinceK( � ) is freeof errorand
independentof thedelay.

Temporalconsistency, i.e. � ���	�
��� < � � is ensuredby
the Penalty-node. The penalty for � ���	�
��� 2 � � is cho-
sento be greaterthanthe absolutevalueof the maximum
reward, i.e. for the maximum reward J �LKNM , penalty is:O� � � J �LKNMQPSRT" . For any choiceof � ���	�
��� and � � , the
expectedvalueof Penaltyis either � � J �LKNMUP�RV" or 5 . There-
fore, the expectedvalueof Reward+Penalty is lessthanor
equalto � R for choosing� � inconsistentlyandgreateror
equalto 5 for choosing� � consistently. Therefore,thecon-
sistentchoiceof � � will alwaysbepreferredversusthein-
consistentchoiceof � � .

The informationallink betweenK � andContentis cru-
cial asthecontentdoesnotneedto bedeterminedbefore� �
is reachedandthusK � is known (andequalto K ���	����� ).

The decisionson notificationtime ( � � ) andnotification
content(Content) aremodeledasdecisionnodes,while the
traveler’s action(Action) is modeledaschancenode. This
is justifiedby thefact,thatchangesin thetraveler’sactions
areonly reactionsto notificationsstemmingfrom theIS.

The joint distribution of all variablesis given by the
marginaldistributionsfor clock � ���	�
��� andWeathertogether
with conditionalprobability tablesfor all other variables
with respectto their predecessors.Instancesof the prob-
lem are calculatedby enteringevidencefor � ���	�
��� , K ���	�����

2[10] givesa quantitative model for the train delay
BDW

andprovidesa
graphicalmodelfor stochasticreasoningthere-about.



andWeatherandpropagatingthis informationthroughthe
network until thenew joint distribution is computed.

3.1 Reward basedon Actionand Delay

Therewardis givenin Table1 below. For Action=takes
taxi therewardis independentof thedelay. 50 is thereward
for takingthetaxi. Wecanthink of therewardasgiving the
likelihoodof timely arrival atsomedestination(in percent).
Thenthevaluescanbeinterpretedin thefollowing manner:
� By taxi, the travelerwill reachherdestinationin time

with a likelihoodof 50%.

� By train, thetravelerwill reachherdestinationin time
with a likelihoodof 100%,if the train is in time, and
with 0%, if thetrain is delayed.

Action takestrain takestaxi
Delay in time delayed in time delayed
Reward 100 0 50 50

Table 1. Reward

3.2 Delay influencesKnowledgeK( � )
Therelationshipbetweenthedelay(Delay) andthe im-

perfectknowledgeK( � ) is shown in Table2 for K � andin
Table3 for K ��������� . In Table2, the distribution of K � de-
pendingon the randomvariablesDelay and � � is shown,
while in Table3 thedistributionof K ���	�
��� is shown depend-
ing on randomvariablesK � , � � and � ���	�
��� .

If Delay� in time and � � � -20, thenK � � delaywith a
probability of 0% (cf. Table 2). If the train will be de-
layed(Delay� delayed), thenK �X� delaywith probabilities
of 20%,50%and90%at � � equalto -20, -10and0 respec-
tively.

For K � =unknown, K ���	����� is unknowndueto K( � ) being
free of error. The last column of Table 3 representsthis
fact in a shorthandrepresentation.For � ���	����� � � � , also
K ���	����� � K � . Since � ��������� 2 � � is formally not forbidden,
we assumeequivalenceof K � andK ���	����� in theseunspeci-
fiedcases.For � ���	����� 0 � � , theconditionalprobabilitiescan
be inferredfrom the distribution of the flipping time. The
distributionfunctionfor theflipping timeis implicitly given
in Table2 by

7 �!� "Y�Z: � K � =delay>Delay=delayed1 � �� �)" . Thefollowing valuesareknown:
7 � -20"[� 5]\_^7 � -10"[� 5]\_`7 � -0"[� 5a\ b
Hencetheconditionalprobabilitiescanbecalculatedfor Ta-
ble 3 aswell. As an example,we considerthe probability

of K ���	����� =delay for K � =delay, � � � -10 and � ���	�
��� � -20.
Theprobabilityis givenby:

: � K ���	�
��� � delay>K � � delay1 � � � -101 � ���	�
��� � -20"c�: � K(-20)� delay>K(-10)� delay"d�: � K(-20)=delay1 K(-10)=delay"]ef: � K(-10)=delay"c�7 � -20"ge 7 � -10"h� 5a\ ^ e 5]\_` � 5a\ i
Thevalueis underlinedin theTable3. Thequalificationon
Delay=delayedcanbeomittedhere,asK( � )=delay is suffi-
cientfor Delay=delayed.

Delay in time delayedj I -20 -10 0 -20 -10 0
K I delay 0 0 0 0.20 0.5 0.9

unknown 1 1 1 0.80 0.5 0.10

Table 2. Kno wledg e K �

K I delayj I -20 -10j CFE G/C�H
-20 -10 0 -20 -10 0

K
CFE G/CFH

delay 1 1 1 0.40 1 1
unknown 0 0 0 0.60 0 0

K I delay unknownj I 0 *j CFE G/CFH
-20 -10 0 *

K
C�E G/C�H

delay 0.22 0.56 1 0
unknown 0.78 0.44 0 1

Table 3. Kno wledg e K ���	�
���
Temporalconsistency ( � ��������� < � � ) is enforcedfor the

decisionon � � by thePenalty-node(Table4). Thepenalty
for � ���	����� 2 � � is chosento be �&k 5 k thusbeingabsolutely
greaterthanthemaximumrewardwhich is k 5#5 .

j I -20 -10 0j C�E G/C�H
-20 -10 0 -20 -10 0 *

Cost 0 -101 -101 0 0 -101 0

Table 4. Penalty

3.3 Actionbasedon Timelyand Content

Latenotificationresultsin failure to inform the traveler
in time. This is representedby Timely (Table5). Earliest
notification( � �;� -20) resultsin Timely=yes, while lateno-
tification ( � �l� 0) resultsin Timely=no. An intermediate
notification time ( � �m� -10) will be timely with a proba-
bility of 90%. The Action (Table 6) doesnot dependon
theContentfor Timely=noor Content=none. In thesecases
Actiontakesbothvalueswith equalprobability.



j I -20 -10 0
Timely yes 1 0.9 0

no 0 0.10 1

Table 5. Timely

Timely yes no
Content take train take taxi none *

Action takestrain 1 0 0.5 0.5
takestaxi 0 1 0.5 0.5

Table 6. Action

3.4 External factor Weather

Theinfluenceof theexternalfactorWeatherontheDelay
is shown in Table7.

Weather sunny rainy
Delay in time 0.7 0.30

delayed 0.30 0.7

Table 7. Delay

3.5 Mar ginal Distrib utions

For completeness,the marginal distribution of Weather
is given in Table8 (left). � ���	�
��� is given with an evidence
(-10) in Table8 (right). Sincethis is no distribution, � ���������
mayalsobearotherevidences.

Weather sunny 0.5
rainy 0.5

j C�E G4CFH
-20 0
-10 1
0 0

Table 8. Weatherand cloc k � ���������

4 What-if Scenarios

Somescenarioswill bepresentedin the following. The
expectedvalueof Reward+Penalty(alsoreferredto asutil-
ity) will bedenotedby n .

4.1 ScenarioI(a): Weather=sunny/ � ���	�
��� =-20

Evidencefor Weather (sunny) is entered,clock time� ���	����� is -20 andK ���	�
��� is unknown. The resultingutilities
for differentdecisionson notificationtime � � andContent
areshown in Table9 below.

j I E
-20 74.47
-10 77.55
0 62.23

Content E
take train 74.47
take taxi 62.23
none 62.23

Table 9. Results for Scenario I(a)

The optimal notificationtime � � is -10. Therefore,no-
tification can be deferred. The optimal content(Content)
cannotbedetermined,until notificationtime � � is fixed.

4.2 ScenarioI(b): Weather=sunny/ � ��������� =-10

Now, clock time � ��������� is -10andK ��������� is still unknown.
Again, -10 is theoptimalnotificationtime (Table10 (left)).
Notification hasto be madeimmediately. For immediate
notification,theresultingutilities for differentdecisionson
Contentcanbeseenin Table10 (right).

j I E
-20 -26.53
-10 80.74
0 66.18

Content E
take train 80.74
take taxi 51.62
none 66.18

Table 10. Results for Scenario I(b)

Obviously, the notificationcontenttake train shouldbe
delivered.

4.3 ScenarioII: Weather=rainy / � ���	�
��� =-20

Evidencefor Weather(rainy) isentered,clocktime � ���	�����
is -20andK ��������� is unknown. Theresultingutilities for dif-
ferent decisionson the notification time � � are shown in
Table11 (left). In this case,-20 is the optimalnotification
time, althoughtheutility for � � � -10 is alsonear-optimal.
Theutilities for notificationtime � � andContentareshown
in Table11 (right).

j I E
-20 50
-10 49.24
0 42.44

Content E
take train 42.44
take taxi 50
none 42.44

Table 11. Results for Scenario II

Obviously, the notification contenttake taxi shouldbe
delivered.



5 RelatedWork

Reasoningwith imperfectinformationhasled to thethe-
ory of POMDP(Partially ObservableMarkov DecisionPro-
cesses,cf. Hauskrecht[6]). Our modeldiffers from previ-
ouswork in thisarea:

� Thetemporaldistancebetweensuccessivestatesis not
fixed,but givenby the time variables� � (notification
time)and � ���	�
��� (clock reading).

� Thetransitionprobabilitiesdo not only dependon the
temporaldistancebetweensuccessive states,but also
on therelativedistancefrom thescheduledtime � � .

Therepresentationof time in Bayesiannetworkshasled
to variousdistinct approaches.Berzuini [3] introduceda
network of datesin orderto reasonaboutthe probabilistic
natureof event occurrencetimesfor medicalapplications.
Temporalrandomvariablesandcontinuoustime is usedin
thiswork.

Deanand Kanazawa [4] proposerandomvariablesfor
durationasa meansto representsemi-Markov processesin
probabilisticnetworks. Tawfik and Neufeld [12] employ
TemporalBayesianNetworks(TBN) for therepresentation
of probabilitiesasfunctionsof time. Arroyo-Figueroaand
Sucar[2] modelevent occurrencetimesasnodeswith re-
spectto time intervalsasdevelopedby Allen [1]. This last
approachis actuallyverysimilarto Berzuini’sapproach,but
it is restrictedto a finite numberof intervals for theoccur-
rencetimeof events.

We employ temporalvariablesin a mannersimilar to
theonefoundin Berzuini,andArroyo-FigueroaandSucar.
However, weemploy relativepointsin time in orderto rep-
resenttheinfluenceof temporaldistancesontheconditional
probabilities.

6 Conclusion

Thepresentedmodelenablesdecisionsonimmediatevs.
deferrednotification. The expectedimprovementof infor-
mationprecisionis tradedoff againstthe expectedlossof
effectiveness.

Furtherinvestigationsareaimedat incorporatingtwo or
moretraveler (re-)actionsandallowing for additionalnoti-
fications.
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