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Abstract

Time sensitive information supply is a common challenge in many information
systems. The issue of determining the best time of information supply becomes even
more important with the growing use of mobile communication devices. Therefore,
the value of information for the information recipient needs to be studied with respect
to time.

In this report, the impact of information on the information recipients plan and
the utility of that plan are modeled in order to facilitate the study of time-dependent
information value. Plan utility is modeled in terms of rewards for certain events and
Bayesian networks are used for probabilistic evaluation of the expected reward.

The interaction of plan execution with the environment is formulated by event
synchronization. Imprecise information about the expected time of external events
is used here for the evaluation of synchronization with these events. The integration
of such information stemming from distinct information sources is supported.

*This research was supported by the German Research Society, Berlin-Brandenburg Graduate School
in Distributed Information Systems (DFG grant no. GRK 316).
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1 Introduction

The evolution of the internet as global infrastructure for easy exchange of information gave
rise to the development of information services that combine information from different
sources. Currently, the advent and rapidly growing use of mobile connected devices such
as laptops, mobile phones, and personal organizers is technologically improving the delivery
of information on a just-in-time basis even though the quality of online connectivity varies
widely between mobile and immobile devices.

This technological evolution is a challenge for the development and improvement of infor-
mation systems, that fully exploit the emerging possibilities. Information logistics provides
a framework for the development of intelligent services, that decide about information deliv-
ery with respect to content, presentation, location, mode, and the best time of information
delivery.

The last aspect is rarely studied yet, even though numerous information systems do already
inform the user in a timely manner, some of them are discussed in the sequel.

Query-based systems provide information as soon as possible after request. Time of
request and technological limitations are solely responsible for the time of information

supply.

Alerting Systems inform the user actively upon the occurrence of certain events that
are specified in terms of profiles or activation triggers (cf. [HF99]). A reasoning
mechanism for the optimal time of delivery could extend the ability of activation
triggers.

Mixed-Initiative Assistance is a new paradigm rather than a class of information
systems. Stemming from artificial intelligence (cf. Fergueson et al. [FAM96] and
Horvitz [Hor99]), this term is used to denote an assistance systems ability to decide
whether it is the users or the systems task to take initiative. Reasoning about the
best time of taking the initiative seems to be an important issue in this area.

The application area considered here is individual trip planning assistance. This
includes personal pre-trip and on-trip information services.  Existing solutions in
the public transport sector include query-based information systems for pre-trip
planning such as HAFAS (http://bahn.hafas.de), EFA (http://www.efa.de),
ASS, GEOFOX (http://www.hbt-hamburg.de/cgi-bin/hvv/geofox) and fahrinfo
(http://www.bvg.de/plan/fahrinfo.html) and mobile solutions built on top
of these such as TRIP (http://www.trip.organon.net/), HAFAS mobil
(http://www.hacon.de/hafas/mobil.html) and EFApersonal. Other solutions ex-
ist for road networks (e.g. http://www.routenplanung.de).

These systems are two steps away from deciding about the best time of information supply.
The first step is the processing of real-time data, the second step is the decision about
the best time of information supply. Real-time data provides a dynamically changing
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knowledge base upon which an information system can judge the utility of the information
already available to the information recipient as well as the utility of new information to
be supplied.

Lets assume, that real-time data is available. The following scenario illustrates the problem
of deciding about the best time of information supply.

A business man plans the trip to a meeting. On the day before the trip, he asks
a route planning system for the optimal connection and receives the information
that it is best to take the train to his destination’s main railway station and a
bus from there to the final address.

During the trip or, more precisely, during the train ride, the personal assistance
system of the business man learns about a delay of the train, reducing the
likelihood of catching the bus at the destination. A taxi might be the better
choice.

Shortly before arrival, the personal assistance system learns from the bus in-
formation system, that the bus will also run late, thus matching late arrival of
the train.

The following conclusions can be drawn from the example:

1. Knowledge about the time of events and thus information to be given to the passenger
is changing. Therefore, the trade-off between expected change and time-dependent
information value needs to be considered for the decision about information trans-
mission. Time-dependency of information value reflects the intuition of information
to be useful at a certain time and to be useless at other times.

2. Knowledge about the time of events may stem from different information sources,
such as the train and bus information systems respectively. In order to judge the com-
bined effects of knowledge updates stemming from different sources, an appropriate
reasoning mechanism has to be implemented for a personal assistance system.

The last issue, namely the judgement of information value with respect to knowledge
updates stemming from different sources is the main issue of this report. We assume
knowledge about the time of events to be given in form of probabilistic distributions over
time and plan utility is evaluated with Bayesian networks in terms of expected rewards.
Influence diagrams, which are an extension of Baysian networks, can then be used for
reasoning about information supply (cf. Pearl [Pea91] for the use of influence diagrams for
decision support).

Section 2 introduces the concepts that provide the basis of the probabilistic reasoning about
event occurrence times. Section 3 contains a broader discussion and proper introduction to
the example used throughout this report. Section 4 gives a formalization of the continuous-
time Bayesian network for the reasoning about event occurrence times. Probabilistic plan
evaluation is exemplified in Section 5. The results are summarized and future research is
outlined in Section 6.
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2 Basic Concepts

In this section, the basic concepts and terminology for the reasoning about actions, events
and change are discussed in order to build a solid basis for further more detailed elabora-
tions. Terms and concepts are mainly drawn from work in the field of artificial intelligence
(cf. Pearl [Pea91] for probabilistic reasoning in general and Shafer et al. [SGS00] for the
notion of events).

2.1 Events

Events and states are the basic entities of discrete change. These concepts have been settled
in various disciplines of computer science independently. Therefore, the notion of events is
ambiguous. In our understanding, events are characterized by the following properties.

Events are instantaneous. This reflects the intuitive assignment of duration to states,
while events are instantaneous state changes.

Events are unique. In general, events are defined as state changes with time. In this
case, uniqueness is implicit by specification of occurrence time. Here, events are
introduced as abstract concepts, whose time is not known or not known precisely.
Therefore, uniqueness has to be explicitly stated, distinguishing different events from
each other. Reoccurrence of events is not possible, but replaced by a finite or infinite
sequence of similar events.

Events are local. Two instantaneous unique events may occur in either sequence if there
is no total dependence between them. Therefore, event specifications need to be local
to guarantee an unrestricted occurrence of other uncorrelated events. Causality has
to be modeled explicitly.

Thus events are an abstract concept for change, that embodies the concepts of instanta-
neous occurrence, uniqueness, and locality as described above.

Upon this concept of events, physical movement can be defined in terms of events for
Arriwal and Departure of objects at certain geographic locations. On the informational
level, information transmission can be defined by events for Send and Receive of information
objects at certain physical objects.

2.2 Action, Goal, Plans, and Information

In a distributed world, autonomy plays an important role for the understanding of action,
interaction, and change. Therefore, agents are modeled as autonomous objects. Agents
may send or receive information. Additionally, they do directly interact with their en-
vironment through observation and action. The selection of actions is directed towards
a goal. In this picture, the passenger from the introductory scenario is an agent. The
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recommendation to take the bus or taxi respectively is an information, and his experience
of actually arriving at a location is an observation. The passenger’s goal is to be in time
at his meeting.

Actions are modeled as pairs of events, namely one event starting and one event finishing
each action.

In general, agents act upon their observation of the world state, i.e. actions are selected
according to the observed world state with respect to a knowledge base. Here, the knowl-
edge base is reduced to a plan, namely a preselected sequence of events to be performed. In
this case, agents simply act by selecting the next event in the plan and to perform it. An
event may fail to occur in which case the plan gets stuck, e.g. if a passenger has planned
to depart (by train) from some location but the train has already left.

Information is transferable knowledge. Here, the information received by an agent is either
an initial plan or a plan update. A plan update does only affect parts of the plan that
have not yet occurred from the agents point of view.

2.3 Probabilistic Projection

Decisions about information transmission are based upon expectations concerning the dif-
ference between the case of information transmission as opposed to the case of no such
transmission. Since the effect of information transmission is assumed to help the informa-
tion recipient in future situations, a model for the expected execution of plans is needed.
The concept to be used here is probabilistic projection of the plan into the future in order
to account for imprecise knowledge about the occurrence time of future events.

Numerous analytical and simulative models for stochastic processes, i.e. processes with
probabilistic choice of alternatives and/or stochastic durations, have been developed.
Stochastic Petri-nets are one exemplary model which combines the formalism of Petri-nets
with stochastic time and selection of transitions. Analytically, stochastic Petri-nets comply
to a certain class of continuous-time semi-Markov chains (cf. Ciardo et. al. [CGL94]).

In order to combine temporal knowledge from different sources, an absolute time line is
needed for synchronization. Continuous time has been chosen here as a natural concept
for this reference system. Absolute time will thus be represented by Ry thoughout this
report.

Bayesian networks have been chosen here in order to reason about expected futures. The
explicit modeling of event occurrence times with respect to an absolute time line requires
an appropriate representation of time in Bayesian networks. The representation of time
in causal networks (both Bayesian and non-Bayesian) has been studied before. A short
overview is given in the next section.
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2.4 Time in Causal Networks

Berzuini [Ber90] introduced a network of dates in order to reason about the probabilistic
nature of event occurrence times for medical applications. Temporal random variables and
continuous time is used in this work.

Other approaches employ Bayesian networks for reasoning about time. Dean and
Kanazawa [DKK92] propose random variables for duration as a means to represent semi-
Markov processes in probabilistic networks. Tawfik and Neufeld [TN94] employ Temporal
Bayesian Networks (TBN) for the representation of probabilities as functions of time.
Arroyo-Figueroa and Sucar [AFS99] model event occurrence times as nodes with respect
to time intervals as being developed by Allen [All83]. This last approach is actually very
similar to Berzuini’s approach but it is restricted to a finite number of intervals for the
occurrence time of events.

2.5 Reward, Utility and Information Value

Since information is modeled as plan update, comparison between the quality of two dif-
ferent plans, namely the original and the updated plan, is an indicator for the value of
information transmission. The quality of a plan is the expected reward of the plan. Re-
wards are assigned to events of the plan occurring at specific times. Probabilistic plan
evaluation gives the expected reward. The expected reward can be interpreted as utility
of the plan with respect to the goal that is represented by the rewards.
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3 An Example

Here, the information recipient is a human user. He tries to follow a given plan (including
the use of different vehicles, both public and private traffic). The superior information of
the expert system can be achieved by feeding it from real-time operating systems of public
transport providers, floating car data, etc.

The example is settled in the application domain of individual trip planning assistance and
is illustrated in Figure 1. Nodes depict events of interest and arrows show the temporal
order of events. Two arrows going out from a node depict alternatives which exclude each
other. Events are grouped together by boxes with labels. Each box corresponds to an
object.

The passenger is in the center of the illustration. Events of different objects may be
required to by synchronous in order to occur. This is symbolized by dotted lines between
nodes.

For the trip to a meeting, two alternative
routes are to be considered after arrival

at the railway station by train. One in- Arrive Depart Arrive
volves the use of a bus, the other involves (train,A) (bus,B) (bus,D)
the use of a taxi for the trip to the fi- —»‘ o _I> ®
nal address. The illustration starts with - : : 1 :
Arrive(pas,A), where pas denotes the agent m : bus buslride :
passenger, A denotes the location of the ar- — )
rival station, and Arrive(pas,A) is a short- Depart Arrive

hand for The event of pas arriving at lo- : ‘ (pas,B) (pas,D)
cation A. From there, the passenger may fe————p-@ |\ ing

either go to the bus stop (location B) or Arrive Depart Arrive
to the taxi stand (location C) and continue (pas,A) (pas,C) (pas,D)
to his final address (location D). Arrivals ) —> o
and departures can only occur at the same : L :
P or O | passenger| P taxiride

time as the respective arrivals and depar- : | :
tures of the transporting vehicles, namely e —> 0
bus, train, and taxi. Depart Arrive
The alternatives of the passenger represent (taxi,C) (taxi,D)

two potential plans, namely (Arrive(pas,A), | taxi
Depart(pas,B), Arrive(pas,D)) and (Ar-
rive(pas,A), Depart(pas,C), Arrive(pas,D)).

Not depicted in the illustration, but equally
important is the goal of the passenger. We assume a deadline problem here, with deadline
taeadiine being the latest time to be at location D, i.e. the meeting.

Figure 1: Trip-Example

Whether the deadline will be met depends on various relationships between the occurrence
times of the events, some of them are listed here.
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Figure 2: Bayesian Network (BN) for probabilistic projection (take bus)

e Late occurrence of Arrive(pas,A) may result in non-occurrence of Depart(pas,B), i.e.
the passenger may miss the bus if the train is running late.

e Late occurrence of both Arrive(pas,A) and Depart(bus,B) may result in late occurrence
of Depart(pas,B), i.e. if both bus and train are delayed, the passenger may catch the
bus, but at a later time.

e Late occurrence of Depart(bus,B) may result in late occurrence of Arrive(bus,D), i.e.
if the bus is delayed at departure time, he might be as well at arrival time.

In order to evaluate the utility of a plan alternative (e.g. for taking the taxi) with respect to
the goal (here: the deadline), probabilistic plan evaluation will be performed with Bayesian
networks.

This is illustrated in Figure 2 for the alternative of taking the bus. The nodes in the
Bayesian network are the random variables for the occurrence times of events denoted by
the respective label. The events considered here are not the same as the ones depicted in
Figure 1. Arrive(trpa,A), Depart(bupa,B) and Arrive(bupa,D) are the respective joint events
of both passenger and train or bus respectively. Arrive(pas,B) has been added in order to
account for the fact, that the passenger will not arrive at the same time as he departs by
bus.

The qualitative model of conditional dependence that is depicted in Figure 2 is justified as
follows:

e Arrive(pas,B) depends on Arrive(trpa,A) by the duration for walking from A to B.
Immediate start for walking is assumed here.

e Depart(bupa,B) depends on Arrive(pas,B) and Depart(bus,B) since the passenger needs
to be at B before the departure of the bus. Depart(bus,B) is assumed being indepen-
dent of Arrive(pas,B) as its major goal is to keep the bus schedule.

e Arrive(bupa,D) depends on Depart(bupa,B) and is determined by the travel time of
the bus.



3 AN EXAMPLE 9

Arrive Arrive Depart Arrive
(trpa,A) (pas,C) (tapa,C) (tapa,D)

Figure 3: Bayesian Network (BN) for probabilistic projection (take taxi)

Depart Reward
(bus,B)

Arrive
(tapa,D)

Arrive
(pas,C)

Information

Figure 4: Influence diagram for the trip-example

It is important to note, that Depart(bupa,B) may fail to occur, since there is the possi-
bility of Arrive(pas,B) occurring after Depart(bus,B). Therefore, the random variable De-
part(bupa,B) needs a special value for non-occurrence (plan failure) which must be propa-
gated along with the plan.

The formal model of uncertain events as nodes in Bayesian networks is given in section 4.4
and considers the concept of non-occurrence.

Figure 3 illustrates the other plan alternative, namely taking the taxi. Here, the departure
time of the taxi is not modeled as it depends heavily on the arrival time of the passen-
ger. Instead, Depart(tapa,C) is directly and only dependent on Arrive(pas,C). All other
dependencies are in analogy to the previously discussed alternative of taking the bus.

In order to decide about the best information for the passenger, the Bayesian net-
works will be extended with decision nodes representing alternative actions and value
nodes, representing cost or benefit. The resulting network is an influence diagram (cf.
Shachter [Sha86] [Sha87] and Pearl [Pea91]). Efficient solutions for the computation of
joint distributions of Bayesian networks and Influence Diagrams are known (cf. Lauritzen
and Spiegelhalter [LS88]).

The influence diagram in Figure 4 contains the probabilistic projections for both plan
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alternatives with common node Arrive(trpa,A) (to the left). Since no information about
exclusion is modeled in this network, the respective branches for the plan alternatives
are to be interpreted as potential plans. The additional nodes are Arrive(pas,D), Choice,
Information, and Reward. They are explained in the sequel:

e Choice is the decision of the passenger and has bus and taxi as possible values.

e Arrive(pas,D) depends on Choice, because the arrival time depends on the plan alter-
native. The distribution in time is to be copied from Arrive(bupa,D) for Choice=bus
and from Arrive(tapa,D) for Choice=taxi.

e Reward is a value node in an influence diagram. Unlike chance nodes, the name for
conventional nodes in Baysian networks, value nodes are not specified in terms of
conditional probabilities. Instead, they assign a certain reward to every outcome
of the chance nodes being parents to the value node. Reward assigns one for Ar-
rive(pas,D) less or equal t0 tgeqaiine and zero for Arrive(pas,D) greater than tgeqarine Or
non-occurring.

e Information is a decision node in an influence diagram. Decision nodes represent
alternative actions. Arrows going from decision to chance nodes depict conditional
dependence. Information has possible values take bus, take taxi and no info.

e Choice depends on Information. We assume even, that the passenger follows the advice
given to him, i.e. in the example, the conditional probability of Choice=bus is one
for Information=Take bus.

For given marginal distributions and known conditional distributions, the optimal deci-
sion can be calculated based upon the joint distribution of all variables. In the example,
marginal nodes would be Arrive (trpa,A) and Depart (bus,B). Concrete calculations are given
in Section 5.

Since marginal distributions may change in the course of time, a typical scenario may look
like this:

One day before the trip: Trains and buses are expected to depart and arrive in time.
Decision: take bus.

During train ride: Train is running late, likelihood of missing the bus raises.
Decision: take taxi.

Short before arrival in A: Bus is also delayed. The delay raises the likelihood of catch-
ing the bus. The bus is still in time with greater probability than provided by the
taxi.

Decision: take bus.
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So what is the best information policy with respect to the passenger? One day before the
trip, the passenger may have inquired for the optimal route to take, and taking the bus was,
according to the scenario, the optimal decision. Is it neccessary to inform the passenger
about the changed decision during the train ride? If not, what are the arguments?

Even though the consideration of information policies is not within the scope of this report,
two observations should be kept in mind for future work:

Optimal information may change due to changes in the knowledge base. As a conse-
quence, early information is neighter better nor worse than late information.

Information timing is important for the assumed direct influence on the choice of the
passenger. Information need to reach the passenger before the alternative has to be
chosen.

According to the second observation information should be given to the passenger before
Arrive(trpa,A).

Intuitively, it seems to be correct to wait as long as possible with information supply, since
late information is assumed to be better than early information. But the first observation
suggests a slight variation in the example. If the information system learns about the delay
of the bus only after Arrive(trpa,A), it would update information according to the delay of
the train only.
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4 Formal Model

The formalization of the concepts being introduced informally in Section 2 is built upon
the example from the last section.

4.1 Events

For reasoning about events, the following types are to be considered.

e (abstract) events are the pure unique events as being described in Section 2.1. Specif-
ically, they are not associated with any notion of occurrence or occurrence time. Ab-
stract events are denoted by eq, ey, ... and the set of abstract events is denoted by
E. Causal knowledge about events (including temporal relationships) will always be
specified with respect to abstract events. Abstract events may also be referred to by
dropping the attribute abstract and simply write event.

e concrete events model concrete potential occurrences of abstract events at a specific
point in time. Concrete events are denoted by éi,é,,... and the set of concrete
events is denoted by E. A function t : E — Ry maps concrete events into R¢, the
continous space of time points. The semantics of causal dependencies between events
are specified with respect to concrete events.

e uncertain events model uncertainty about the potential occurrence and occurrence
time of abstract events. Uncertain events are denoted by é1,€é,,... and the set of
uncertain events is denoted by E. In Section 4.4, uncertain events are modeled by a
continous probability measure for the possibilities of occurrence at some point in time
and of non-occurrence. Uncertain events are used for the probabilistic evaluation of
plans by projection into the future.

In order to correlate different types of events, that represent the same abstract event, an
equivalence relation =, is defined for the disjoint union of E, F and E. For an abstract
event e, [e|] denotes the equivalence class that contains the abstract event itself and all
concrete and uncertain events representing e.

Example: e =Arrive(pas,A) is an abstract event. é € [e] with ¢(é) = t is the concrete event
of passengers arrival in A at time ¢.
4.2 Plans and Constraints

Plans are defined on top of abstract events, because they do not refer to the actual occur-
rence of any event.

Definition 4.1 A plan is a finite sequence of distinct events (e1,...,e,), i.e. e; # e; for
1<i<ji<n.
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Example: With  e;=Arrive(pas,A), es=Arrive(pas,B), es=Depart(pas,B) and
es=Arrive(pas,C), the first plan alternative depicted in Figure 1 is represented by
plan (eq, e, €3, €4).

For projection of plan execution, all influences on the temporal distance between and non-
occurrence of events in the plan have to be considered. Temporal distance between events
is caused by inherent duration or waiting for external events. Non-occurrence is caused by
failure to synchronize with external events. Inherent duration and synchronization with
external events are thus the concepts underlying these influences.

Inherent duration is the minimal temporal distance between subsequent events given by
some kind of implicit knowledge about natural laws governing the occurrence of these
events.

Definition 4.2 Let p be a plan, E(p) the set of events in p. The duration constraint
duration(ey, ez, d) with ey, e; € E(p) and d € R{ is met by concrete events é; € [e;] and
éy € [62] <~ t(el) < t(62) + d.

Example: e, occurs not earlier than 5 minutes after e;, accounting for the time needed
to walk from location A to location B.

Definition 4.3 Let p be a plan, E(p) the set of events in p. e, an external event. The
synchronization constraint sync(e;, e;) with e; € E(p) is met by concrete events é; € [e;]
and é, € [e;] < t(é;) = t(és).

Example: Depart(pas,B) happens synchronously with Depart(bus,B), accounting for the

fact of simultaneous departure of passenger and bus.

The next event in a plan does occur, if it can be synchronized. The time depends on
the time of synchronization or, alternatively, on the minimum temporal distance from the
previous event.

4.3 Rewards

Rewards are given as functions over time per event e.

Definition 4.4 Let p be a plan, E(p) the set of events in p. The reward for execution of
p is given by R : E(p) x Ry — R{ with R(e,t) being the reward for event occurrence é
with é =, e and t(é) =t.

Example: For the example (cf. Section 3), the deadline for e=Arrive(pas,D) can be

modeled by reward

1 ¢ S tdeadline
= 1
R(e’ t) { 0 t> Ldeadline ( )

All other events receive no rewards.
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4.4 A probability measure for uncertain events

Imprecise information about the timing of external events can be modeled by different
models and on different levels of granularity. A continuous probability measure for the
occurrence time of events is used here.

Generally, a continuous probability space (€2, A, P) is defined by Q = R or R with A C 2%
being a o-algebra containing at least all intervals in ). For any A € A a probability is

assigned by probability measure P with P(A) = tib f(t)dt, where f is a non-negative

function. Additionally, [° f(¢)dt =1 since P(Q2) = 1.

Here, the possibility of non-occurrence shall be modeled by an extra discrete atomic event.
The term event here refers to an element of A and atomic means, that it consists of a single
element of €.

It is a wide-spread practice to define Q2 as a compact interval [0, 00| and to assign non-
occurrence to the value co. We will follow this approach but we will represent the prob-
ability measure by a pseudo-density function for occurrence and a separate dirac impulse
for non-occurrence.

Definition 4.5 (92, A, P(e)) is a probability space for event e with

e Q= [0,00 for the continuum of time (RJ) and the possibility of non-occurrence (<),
e A is a o-algebra containing all intervals of type [a,b) and oo,

e P(e) is a probability measure with P(A) for A € A given by

B LfMdt cog A
Pla) = { fAff(t) dt+p co€ A )

with density function g(t) = f(t) + pdo(t) and p = 1 — [[° f(t)dt. f(t) is a non-
negative, bounded, piecewise continuous function and pdn(t) is a dirac impulse at oo
of size p.

Notation: For unindexed events e, P, and f, are used instead of P(e) and f, for indexed
events e;, P, and f; are used.

We call f.(t) the pseudo-density function representing the uncertain event é.

The definition allows both discrete, interval-based approaches to probabilistic reasoning
about the occurrence time of events and continuous reasoning with arbitrary intervals.
4.5 Quantification of Conditional Dependence

Probabilistic projection requires two basic operations. These operations are encoded into
the conditional dependencies between the nodes. The first (Duration) is required, if the
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next event of the plan occurs only after a certain duration, the second (Wait or miss) is
required, if the next event of the plan can only occur at the same time as a specific external
event.

Mixed cases, i.e., both Duration and Wait or miss for the same event are not considered
here, they can be separated by adding potential events into a plan.

Duration Let e, e be subsequent events of a plan and duration(es, es, d) is the constraint
to be obeyed. d is a continuous random variable on Ry represented by f(t). For
given pseudo-density function fi(t),

folt) = /O fult = 7) - falr) dr. (3)

a kind of a pseudo-convolution.

Wait or Miss Let e, e5 be subsequent events of a plan, e, an external event and ey =; e,
is the constraint to be obeyed. For given pseudo-density functions f;(¢) and f;(t),

fo(t) = fu(2) / fi(r) dr (4)

It should be noted, that [;° fo(t) dt is not equal to one even if [;* f,(¢)dt =1 and
J° fi(t)dt = 1. This is intended, since the case of missing the bus needs to be
accounted for the probability of the non-occurrence.
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(bus,B)

Arrive R Arrive Depart Arrive Arrive
(trpa,A) (pas,B) (bupa,B) (bupa,D) (pas,D)
Arrive Depart Arrive Choice
(pas,C) (tapa,C) (tapa,D)

Information

Figure 5: Influence diagram with indexed events

5 Probabilistic Evaluation by Example

The influence diagram from Figure 4 is shown in Figure 5 again. Nodes are grouped here
with respect to their intended use for decision about information supply.

The marginal distributions of Arrive(trpa,A)) and Depart(bus,B) represent knowledge about
the time and occurrence of external events. This knowledge can be updated by direct
replacement of the marginal distributions. This reflects the fact that evidence influencing
these nodes will be obtained outside the model, e.g. by the railway information system
or the bus information system, and transferred into the model by update of marginal
distributions.

The nodes at the center of the illustration represent the potential events of two plan
alternatives. Conditional dependence is modeled by application of the concepts being
introduced in Section 4.5. It is important to observe, that the events here are indeed
potential events, since no decision about the actual plan of the passenger is modeled in
this group of nodes.

The nodes to the right are merely for the decision about information supply. Arrive(pas,D)
is an abstract event for the combined arrival at D. It is important to observe, that Ar-
rive(pas,D) is not the joint event of Arrive(bupa,D) and Arrive(tapa,D), since they are exclu-
sive to each other. Instead, the pseudo-density function of Arrive(pas,D) is the weighted sum
of the pseudo-density functions for Arrive(bupa,D) and Arrive(tapa,D) where the weights are
given by the decision of the passenger in node Choice.

In order to solve the influence diagram, the HUGIN-toolset (http://www.hugin.com/), a
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leading software solution in the field of Bayesian network analysis is applied.

In HUGIN, discrete random variables have to be used instead of continuous random vari-
ables. The continuous random variables are thus represented by intervals of time. Marginal
distributions for Arrive(trpa,A) and Depart(bus,B) are shown in Figures 6(a) and 6(b).

Applying the results of Section 4.5 to the example from Section 3, we get the following
conditional dependencies:

e (Walking from A to B) Arrive(trpa,A), Arrive(pas,B) have temporal distance due to
duration dyaiking, the time neccessary for walking from A to B. With deterministic
duration dyaking = 9, the conditional dependency table for the example is depicted in
Figure 6(c) following the concept of Duration. For a deterministic (discrete) duration,
convolution (cf. Section 4.5) reduces to a shift on the time line, being represented by
the functional dependence given in the table.

e (Wait for or miss the bus departure) Arrive(pas,B), Depart(bupa,B) have tempo-
ral distance due to synchronization between Depart(bus,B) and Depart(pas,B). De-
part(bupa,B) represents the joint occurrence of both events. Since the bus does not
wait, its departure time is independent of the arrival time of the passenger at B.
However, Depart(bupa,B) can fail to occur due to synchronization failure. The con-
ditional dependency table for the example is depicted in Figure 6(e) following the
equation for Wait or miss (cf. Section 4.5).

e (Bus ride from B to D) Depart(bupa,B), Arrive(bupa,D) have temporal distance due
to duration dy,s, the time for the bus ride. dy,s = 25 is a deterministic (discrete)
duration and is modeled the same way as walking from A to B.

e (Walking from A to C) Arrive(trpa,A), Arrive(pas,C) have temporal distance due to
duration dygking, the same time as for walking from A to B.

e (Waiting for taxi departure) Arrive(pas,C), Depart(tapa,C) have temporal distance due
to duration dygittazi, the time needed for a taxi to show up and start. dygittazi 1S 9,
10 or 15 with probabilities 0.7, 0.2 and 0.1 respectively. The conditional dependency
table is depicted in Figure 6(d).

e (Taxi ride from C to D) Depart(tapa,C), Arrive(tapa,D) have temporal distance due
to duration dyag;, the time for the taxi ride. dyz; = 25 is a deterministic (discrete)
duration and is modeled the same way as walking from A to B.

The other nodes and conditional dependencies are added as follows (cf. Section 3):
e Decision node Information has values Take bus, Take taxi, and No info.

e Chance node Choice has values bus and taxi. The conditional dependency table for
the example is depicted in Figure 6(f). Passengers choice follows the information
given to him and in the case of no information, he will take either plan alternative
with equal probability.
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time | probability time | probability Arr(trpa,A) | 0-5 | 5-10
0-5 10.90 10-15 | 0.80 5-10 1.00 | 0.00
5-10 | 0.10 15-20 | 0.20 10-15 0.00 | 1.00
(a) Arrive(trpa,A) (b) Depart(bus,B) (c) Arrive(pas,B)
Arr(pas,C) | 5-10 | 10-15 Dep(bus,B) 10-15 15-20
10-15 0.70 | 0.00 Arr(pas,B) | 5-10 | 10-15 | 5-10 | 10-15
15-20 0.20 | 0.70 10-15 1.00 | 0.50 | 0.00 | 0.00
20-25 0.10 | 0.20 15-20 0.00 | 0.00 | 1.00 | 1.00
25-30 0.00 | 0.10 n-occ 0.00 | 0.50 | 0.00 | 0.00
(d) Depart(tapa,C) (e) Depart(bupa,B)
Information | Take bus | Take taxi | No info ‘
bus 1.00 0.00 0.50
taxi 0.00 1.00 0.50
(f) Choice
Choice bus taxi
Arr(tapa,D) 35-40 40-45 45-50 50-55
Arr(bupa,D) | 35-40 | 40-45 | n-occ | 35-40 | 40-45 n-occ | 35-40 | 40-45 | n-occ
35-40 1.00 | 0.00 |0.00 |1.00 | 0.00 0.00 | 0.00 | 0.00 | 0.00
40-45 0.00 |1.00 | 0.00 |0.00 |1.00 0.00 | 0.00 | 0.00 | 0.00
45-50 0.00 |0.00 | 0.00 |0.00 |0.00 1.00 | 0.00 | 0.00 | 0.00
50-55 0.00 |0.00 | 0.00 |0.00 |0.00 0.00 |1.00 | 1.00 | 1.00
n-occ 0.00 |0.00 |1.00 |0.00 |0.00 0.00 | 0.00 | 0.00 |0.00
(g) Arrive(pas,D)
Arr(pas,D) | 35-40 | 40-45 | 45-50 | 50-55 | n-occ
reward 1.00 | 1.00 |0.00 |0.00 |0.00
(h) Reward

Figure 6: Marginal distributions and conditional dependencies
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e Chance node Arrive(pas,D) is a copy of the value of Arrive(bupa,D) for Choice=bus
and a copy of the value of Arrive(tapa,D) for Choice=bus. The conditional depen-
dence table is to big to be printed in full, but illustrative parts of it are depicted in
Figure 6(g).

e Value node Reward=1 for Arrive(pas,D)< 45 and Reward=0 for Arrive(pas,D)> 45 or
non-occurrence. The table is shown in Figure 6(h).

Computations have been performed for three different scenarios. The scenarios are inspired
by the introductory example and are named pre-trip, on-trip I (short after departure), and
on-trip II (short before arrival) respectively. The three scenarios differ only in the marginal
distributions for Arrive(trpa,A) and Depart(bus,B). Both taxi and bus need the same time
to D from B or C respectively. Therefore, occurrence and time of Depart(bupa,B) and
Depart(tapa,C) are the determining factors for meeting the deadline.

In Figure 7, the results are shown for all three scenarios. For ease of representation, several
random variables are combined into a single table, even though not all possible values need
to be in the domain of the respective random variable. Departure from B or C after time
20 (marked by a horizontal line) does not meet the deadline.

The marginal distributions Arrive(trpa,A) and Depart(bus,B) differ at the probabilities
marked by < from the respective previous scenario. The resulting changes for De-
part(bupa,B) and Depart(tapa,C) are marked by 4+ and — behind the probabilities.

Separate tables are given for the decision about information supply with the expected
reward for any possible outcome. In the pre-trip scenario, Take bus is the optimal infor-
mation with expected reward 0.96. This changes in the on-trip I scenario, where Take taxi
is the optimal information with expected reward 0.7 due to the risk of missing the bus.
Short before arrival (on-trip II), Take bus is the optimal information again with expected
reward 1.00 due to the delay of the bus. The expected reward is not a probability. Since
the reward is one for Arrive(pas,D) occurring before the deadline and zero for Arrive(pas,D)
occurring after the deadline or not at all, it may though be interpreted as the probability
of meeting the deadline.

It seems to be counterintuitive, that the probability of being in time is higher if both the
passenger and the bus are delayed and not in the pre-trip case. However, in the pre-trip
case, there is still a possibility of the passenger being late and the bus being in time.

The model does provide different suggestions for information supply for different scenar-
ios represented by different knowledge in terms of marginal distributions. However, the
conclusion for the decision about information supply is not straightforward. If the best
possible choice is changing all the time, it might be more secure for the passenger to take
the taxi and avoid informational confusion.
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20

information | exp. reward
Take bus 0.96
Take taxi 0.88
No info 0.92

(b) exp. reward for pre-trip

information | exp. reward
Take bus 0.60
Take taxi 0.70
No info 0.65

(d) exp. reward for on-trip I

time | A(trpa,A) | D(bus,B) | D(bupa,B) | D(tapa,C)
0-5 0.90 0.00 0.00 0.00

5-10 | 0.10 0.00 0.00 0.00
10-15 | 0.00 0.80 0.76 0.63
15-20 | 0.00 0.20 0.20 0.25
20-25 | 0.00 0.00 0.00 0.11
25-30 | 0.00 0.00 0.00 0.01
n-occ | 0.00 0.00 0.04 0.00

(a) pre-trip

time | A(trpa,A) | D(bus,B) | D(bupa,B) | D(tapa,C)
0-5 0.00< 0.00 0.00 0.00

5-10 | 1.00« 0.00 0.00 0.00
10-15 | 0.00 0.80 0.40— 0.00—
15-20 | 0.00 0.20 0.20+ 0.70+
20-25 | 0.00 0.00 0.00 0.20+
25-30 | 0.00 0.00 0.00 0.10+
n-occ | 0.00 0.00 0.40+ 0.00

(c) on-trip I (short after departure)

time | A(trpa,A) | D(bus,B) | D(bupa,B) | D(tapa,C)
0-5 0.00 0.00 0.00 0.00

5-10 | 1.00 0.00 0.00 0.00
10-15 | 0.00 0.00< 0.00— 0.00
15-20 | 0.00 1.00< 1.00+ 0.70
20-25 | 0.00 0.00 0.00 0.20
25-30 | 0.00 0.00 0.00 0.10
n-occ | 0.00 0.00 0.00— 0.00

information | exp. reward
Take bus 1.00
Take taxi 0.70
No info 0.85

(e) on-trip II (short before arrival)

Figure 7: Three different scenarios

(f) exp. reward for on-trip II
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6 Summary

In this report, we presented a formal model for the probabilistic evaluation of plans with im-
precise knowledge about the time of future events. Bayesian networks have been employed
for the reasoning about possible plan executions with nodes representing event occurrence
times. The chosen approach

e supports the combination of imprecise temporal knowledge from different sources,

e allows the easy integration of temporal knowledge with varying granularity due to
its foundation on continuous time and

e facilitates the comparison of the utility of different plans for the decision about al-
ternatives with respect to the combined knowledge.

For the example used in this report, a qualitative analysis of the relationships between event
occurrence times and a quantitative analysis of these relationships based upon qualitative
considerations has been demonstrated. The resulting Bayesian network has been extended
with a simple decision model for information supply in the form of an influence diagram.

Probabilistic plan evaluation forms a solid basis for the study of information value dynam-
ics. Future research is directed towards the construction of decision models for reasoning
about the time of information supply and multiple information supply at different points
in time.
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