DISTRIBUTED GENERATION OF FASTEST PATHS

THOMAS KAMPKE and MARKUS SCHAAL
Forschungsinstitut fiir anwendungsorientierte Wissensverarbeitung (FAW),
Helmholtzstr. 16, 89081 Ulm, Germany
e-mail: {kaempke, schaal}@faw.uni-ulm.de

ABSTRACT

Distributed generation of fastest paths is an im-
portant issue in future environments of distributed in-
formation systems.

Motivated by the project DELFI (?Durchgingige
ELektronische FahrplanInformation” / continuous elec-
tronic time table information), which involves the de-
sign of such an environment for selecting routes pro-
vided by public transportation means, we investigate
labeling algorithms for fastest path generation and de-
scribe a distributed approach for finding fastest paths
using an aggregated structure.

Keywords: Labeling algorithms, Shortest paths, Dis-
tributed computation, Aggregated structure.

1 INTRODUCTION

This work is motivated by the project DELFI
(”Durchgingige ELektronische FahrplanInformation” /
continuous electronic time table information), which
involves the design of a traffic information system that
selects connections provided by public transportation.

Passenger transportation service is typically of-
fered by different companies and authorities and so is
information thereabout. Various independent informa-
tion systems which cover different regions or different
means of transportation (trains, buses, airplanes) are
to be merged.

The individual systems’ independence and the in-
dividual system administrators’ responsibility for data
are to be preserved. We start from the hypothesis that
merging is to be facilitated by a high level system, a
so-called search controller which extracts information
from the individual systems in order to answer queries
beyond the scope of each individual system. This is
illustrated in figure 1.

The objective considered here is that of finding
a connection from a user-specified origin to a user-
specified destination so that the transition takes a min-

.--~"""" continousroute "7--.

. ./_\./\/\.
Bus Plane Train

Search
Controller

Ind|V|dua| In ividual Ind|V|dual
System A stem B System C

55 &

Local Public Airlines Nationa Rail
Transport

Figure 1: Search controller

imum amount of time from a certain moment onward.
Though other objectives clearly exist, this serves as a
reasonable proxy.

In case of agreeability in terms of a certain clos-
ing condition specified below, optimal solutions can be
found in a two step approach: an aggregated struc-
ture shrinks the search space for fastest connections so
that subsequent computations on the complete struc-
ture provide the fastest overall solution without search-
ing the complete structure.

2 THE FASTEST PATH PROBLEM

2.1 GENERAL ASSUMPTIONS

A directed graph G = (V, E) is assumed to be
given over a finite, non-void set V' of vertices and a set
E C VXV of directed edges. The graph G is allowed to
contain cycles and it is supposed to be simple meaning
that there is at most one arc from vertex i to vertex

j and there are no loops, i.e. no arcs from any vertex
i to itself. Hence |E| = O(n?) for [V| = n. G is
assumed to be connected meaning that for each v,w €
V there is a path of vertices p(v,w) = pg(v,w) = (v =
10y015e -y bk = ’UJ) so that (7:0,7:1), ey (ik—laik) € E.
Typically, the graph G contains the inverse edge for
each of its edges, i.e. (i,j) € E = (j,i1) € E. All
edges are labeled. The label of edge (¢,) is a cost or
transition function ¢;; : T — IR> with index set T
denoting time, T' € {IR, R>}.

The traversal along edge (i, j) starting at time t
takes time ¢;;(tg). We assume the function ¢;;(t) being
start-arrival-monotone, i.e. t, < tp = to + ¢;5(te) <
ty + Cij (t)

j Cin(t + cij @y F
cij(t1)

Figure 2: Labeled path without waiting

Let a vertex path p = (iy, . .., 4,) with (i1,42), - . .,
(ir_1,i,) € E be given without cycles meaning that
is 7 iy for s # t. This leads to arrival time t in vertex
i, with iteration law

th = th—1 + Cip_qiy (tkfl) for k = 2,...,r.

ObViOllSly, tp = t1 + Ciyiy (tl) + .ot Cipqin (tk—l) for
k =2,...,r so that the transition time from vertex i,
to i, starting at time ¢; along path pg(v,w;t;) = (v =
il,.. . ,7;,« = w;tl) is

tr—t1 = Ciyin (t1)+- - -+ Cip_yi, (tr—1) = I (pe (v, w; t1)).

Figure 2 sketches the situation with r = 3 and i; =1,
i3 = j, and i3 = k. The time dependence of the edge
labels has the consequence that an arc being part of
different paths and traversed with different departure
times may contribute with different traversal times to
the overall path traversal times.

Definition 1 A fastest path p% (v, w;t1) from v to w
starting at time ty is one solving the optimization prob-
lem

min J(pa (v, w; t1)).

pa (v,wit1)

For time independent labels c¢;;(t) = ¢;; the
fastest path problem obviously reduces to the short-
est path problem.

Saw tooth functions are of special importance for
edge labels. This type of function is exclusively con-
sidered from now on. Suppose, as in a scheduled trans-
portation system there are connections from ¢ to j de-
parting only at fixed times ¢! < ... < "¢ requiring

proper transition times d',...,d~¢ > 0. Then the cost
function c;; is given by

th—t+d, ift <t!

2 —t+d?, iftt <t <t
cij(t) =4 :
Vi —t 4 aNe, if Vil <t < NV
00, if tVi < t.

The appearance of ¢;; is sketched in figure 3.

N

tt 2t

Figure 3: Saw tooth cost function

To make c;;(t) be defined for values t > t"i, oo is
there replaced by a sufficiently large value M.

An obvious lower bound for a fastest path is
given by shortest paths, where all edges receive a
positive real-valued label denoting the minimum of
all proper transition times along the edge. The
length of a path pg(v,w) = (v = 41,...,% = w)
with respect to the time independent labels is de-
noted by Apg(v,w)) = Av = i1,-..,4p = w) =
E;;i Cijij41 SO that A(pG(U,U))) < 19(pG'(v7U]>t)) for
all t > 0 and a shortest path is denoted by p2 (v, w) =
aTgminpc(v,w))‘(pG (Ua w)) .

2.2 RELATED APPROACHES

With respect to aggregation we account for the ir-
regularity of a real world constellation. Thus, regular
hierachical graph constructions such as developed for
VLSI design are not appropriate here. Rather, present
local replacement techniques are loosely related to al-
gebraic graph and order decomposition [7] and separa-
tion approaches to decomposition [3].

2.3 STRUCTURAL PROPERTIES

The fastest path problem satisfies the dynamic
principle for minimum arrival times. Let therefore uy
denote the minimum arrival time at vertex w = i
starting at vertex v from ¢; onward.

Theorem 1 The objective values of the fastest path
problem satisfy

up = min {w + ar(w)},Vk e V — {v}

{teVv|(L,k)eE}
Uy = tl.

The proof is analogue to the one for shortest paths
as given for example in [4].

3 COMPUTATIONS

3.1 GENERAL CASE

Fastest path problems can be solved by a mod-
ification of the Dijkstra algorithm. This modifica-
tion is given as W1. It makes use of a list of ten-
tatively labeled vertices L and labels m(k) denoting
an upper bound on the arrival time at k. The sets
S(i) = {j € V|(i,j) € E} denote immediate succes-
sors of 4 € V. Instead of considering only one starting
point v, the algorithm takes the set A C V — {w} of
candidate departure vertices into account with avail-
ability times t,,v € A. The optimal candidate v € A
is the one for which the fastest path from v to w start-
ing at time ¢, has minimal arrival time in w.

W1

1. (Initialization). Set L=V, m(l) =co Vi€ V—A,
and m(v) = t, and pred(v) = v for all v € A.

2. (Iteration). While L # @ do:

(a) Select i € L with i = argminicrm(l).

(b) L =L - {i}.

(c) Vj e LNS() do:
if ¢ (m(i) < m(5), then m(j) = ci;(m(0))
and pred(j) = i.

3. (Termination). Output m(w) and w,pred(w),
pred(pred(w)), ... ,pred(... (w)...) =wv.

Paths generated by Dijkstra like algorithms such
as W1 will always be specified backwards for nota-
tional ease. After having finished the last iteration of
step 2, the algorithm does not yet explicitly hold the
departure vertex v of the optimal path. This is found
by O(n) successive evaluations of the predecessor func-
tion. The optimal path may run from v through one or
several other vertices of A. Therfore it is essential to
start with all vertices — not all except some from A —
being in the list L of tentatively labeled vertices.

Theorem 2 Algorithm W1 computes a fastest path
from v € A to w starting ot time t,.

The time complexity of W1 is O(n?) if computing
each value of ¢;;(-) is organized by an array to take
O(1) steps.

3.2 SPECIAL GRAPHS

For linear graphs which are graphs with O(n)
edges the algorithm W1 can be refined to have a less
than quadratic run time. This is done by a heap con-
taining the values m(k). Since the minimum of a heap
can be computed in O(logn), the n minimum com-
putations in step 2(a) require O(nlogn) computation
effort over all iterations. The operations from step 2(b)
require n computations and the operations of step 2(c)
require O(n) edge related updates for all iterations
combined. Each update of the heap requiring effort
O(logn) gives an overall run time of O(nlogn), comp.
[2, p- 1005]. The same complexity applies to comput-
ing all fastest paths that emanate from v.

4 DISTRIBUTED COMPUTATIONS

Distributed computing requires local computa-
tions as well as a communication overhead. The local
computations adhere to region covers.

Definition 2 Let G = (V, E) be connected. A collec-
tion C = {C1,...,Cy} of subsets or classes C; of ver-
tices from V is called a region cover of V if it satisfies
all subsequent conditions:

LU, Ci=V.

2. Uicr, iz Ci 2V VE=1,...,p.

3. Each induced subgraph G; = (C;, E(C;)) with
E(C;) = {(a,b) € E|a,b € C;} is connected,
1=1,..., 4.

4 7:1 E(C;) =E.

Condition 1 means that C is a cover of V and
condition 2 means that each class C; contains a vertex
which is not contained in all other classes united. The
last condition implies that a region cover is a clutter,
which is a system of pairwise C-incomparable subsets
of V. Condition 4 means that a path’s transition from
one class to another occurs only at vertices that are
common to both classes. Hence from condition 4 alone
follows that a region cover can never be a partition
of V except in the trivial case y = 1. Condition 3 is
not necessary for the sequel but it avoids artificially
complicated constellations. A non-empty intersection
of two classes need not be connected.

The classes C; of a region cover are supposed to
be those sets for which fastest paths can be computed

locally. Transitions from one class to another should
be sparse and usually will be for classes derived from
real world problems. However, the fastest path may
make ©(n) changes from one class to another even in
the case of only p = 2 classes as in the next example.

Example 1 Let G have a cover with u = 2 as given
in figure 4, where arc directions are omitted. FEach
traversal along a horizontal edge is long compared to
each traversal along a slanted edge. The fastest path is
unique with n/3 class changes. S

JAVASVAVS}

V

v

Figure 4: ©(n) class transitions

Cardinalities of intersections between different
classes of a region cover should be minimal. The reason
is twofold. First, this simplifies updating and consis-
tency routines of transition functions which are subject
to change over long periods of time. Second, the com-
putational effort is reduced with each reduction of sizes
|C; N C}| for classes C;,C; € C, see below.

Definition 3 Let C = {C4,...,C,} be a region cover
of G =(V,E).

1. A class C; is called (fastest path) closed if ot least
one fastest path from any v € C; to any w € C;
starting from an arbitrary moment onward con-
sists only of vertices in C;.

2. The region cover is called (fastest path) closed if
all its classes are (fastest path) closed.

Let C be a connected subset of V, A C C, and (t,)
denoting the vector of availability times. W1(C, A,t)
then denotes the algorithm W1 computing the fastest
paths from the respective optimal candidate v € A
to vertices in C starting at time ¢,. More precisely,
W1(C, A, (t,)) = (m(z)) Vz € C', C' C C with set
A C C denotes the execution of W1 with given initial
conditions until all x € C' have received permanent
labels m(z). Also, we make use of the so-called trace.

Definition 4 A trace or C-trace of a path is a sequence
of classes containing the vertices of a path in the order
of their appearance where a class is only changed if
necessary.

For example, a path idg,...,iy has trace
(077087 03) iin; s 7is1 € CV77 Z'51+17 s Jisz € C18_CV77
and ig,41,-..,4x € C3 — Cs. A trace of a path is gen-
erally not unique, but it is in a two region cover due
to minimality of description length. Computing the
trace of a fastest or reasonably fast path based on ag-
gregated information appears to be the core problem
of distributed path computations.

In the sequel, a fastest path will be concatenated
from partial paths stemming from different computa-
tions steps (over different classes).

4.1 FIXED TRACES

The fastest path from v to w starting from time
t1 onward under the constraint of using a prespecified
trace (C4,...,C,), v € C1,w € C,, can be computed
by the following algorithm. The trace may contain rep-
etitions accounting for the case of region covers being
not fastest path closed.

W2

1. W1(Cy, {v},t1) = mo(z) for all z € C; N Cs.

2. Fori=2,...,v—1do:
W1(C;, Ci—1 N Cyy (my—o(x))) = my_1(x), for all

zeC;N Ci-i-l'

3. W1(C,,Cr_1 N Cyy (my—2(x))) = my—_1(w) and
output m,_1(w) and w,pred, ;(w),..., T, 1,
pred, 2(xy_1),...,21,predo(z1),. .. ,v.

Algorithm W2 runs in O(v - max{|C1]?,...,|C,[*}).

Accounting for the fact that a subtrace of a trace
could result in an earlier overall arrival time, algorithm
‘W2 can be modified, so that already found optimal
labels will not be overwritten by subsequent computa-
tions.

4.2 COMPUTING TRACES FROM AN AG-
GREGATED VIEWPOINT

The intersection graph Gz¢ of all non-void inter-
sections of regions is introduced to enable the compu-
tation of traces which ideally coincide with traces of
fastest paths. The intersection graph allows to calcu-
late candidate traces for fastest paths on the basis of
estimates for travel times.

Definition 5 The intersection graph Gzc =
(Vze, Eze) is defined by having the vertex set V¢ :=
{veine; | Cs, Cj € C with C;NC; # 0} and the edge set
Ezc := {(vcinc;» vaunc)| {Ci, C33 N {Ck, Ci} # 0 and
{Ci, C;} # {Ck, Ci}}-

The intersections of distinct classes receive dif-
ferent vertices even if the intersections should be
equal. The edge set specification contains the condi-
tion ”{C;,C;} # {Ck, Ci}” ensuring that the intersec-
tion graph contains no loops. Each class of C is repre-
sented in Gz¢ by the clique of all its intersections with
other classes.

G7c receives constant edge labels by assigning
edge (vo;nc;,vc,ne,) the value ming ecc;ne; woecinc:
A(p% (vo,wo)). Thereby labels within G are given for
each edge (i,7) by minj<k<n; d¥, where d* are the
transition times belonging to ¢;;(-); comp. section 2.1.

A candidate trace for a fastest path from v € C}
to w € C, can be computed as a shortest path by
the following procedure which extends the intersection
graph by making connections to v and w, comp. ex-
ample 2.

T1

1. Vertices v € C; and w € C, are inserted into Vz¢,
all edges (v,vo,nc;) with C1NC; # 0 and all edges
(ve,no,,w) with C; N C, # (0 are inserted into
E7¢ resulting in the extended intersection graph
G{™). The extra edges are labeled in the same
way as previous edges in Ez¢.

2. Computation of a shortest path p° o w (VW) =

(v,C;,NCy, ..., Cip_,NC;, ,w) with 1ndex1ng cho-
sen so that k is even.

3. Induction of trace

(a) (Initialization). ¢ = (C4) and last(c) = 1.

(b) For j =4,6,...,k do
If Cij_1 N Cij Z Clast(c) then update
¢ = (¢,Cs) with {Cs} {Ci;_,,Cy,} N
{Ci;_5,Ci;_, } and last(c) = s.

(¢) If w & Clasi(c) then ¢ = (¢, C,) and last(c) =
v.

(d) Output of induced trace ind(p° Py (v,w)) =
c.

Traces generated by T1 may repeatedly visit
classes of the region cover C. The induced traces serve
as candidate traces for a fastest path from v to w when
fed to W2. An induced trace from a shortest path in
the extended intersection graph need not be the trace
of a fastest path.

Even a nonplanar graph G may lead to a planar mod-
ified intersection graph as in the following example
which also illustrates the intersection graph and the
extended intersection graph.

wC4

Figure 5: Nonplanar graph with a two region cover

Example 2 Let a nonplanar graph G be given with
n = 11 wvertices by figure 5 together with a region
cover with u = 4 classes. FEdge directions and labels
are omitted in all cases. Both the (planar) intersec-
tion graph Gzc and the extended intersection graph
G(v) are given in figure 6. The intersection graph
contains for erample the edge between Cy; N Ca and
C1 N Cy because {C1,C2} N {Cy,Ca} = {C1} # 0 and
{C1,Cs} # {C1,Cy}, comp. the definition of Gzc. ©

CiNCs C1 ﬂC_3.U
ClﬂCg-<] CiNCy
— ew
CinNnCy CindCy

Figure 6: Intersectlon graph Gz¢ and extended inter-
(v,w)
section graph G7;

4.3 RELATIONS OF THE ORIGIN AL GRAPH
TO AGGREGATED GRAPHS

4.3.1 SHORTEST PATHS

Lemma 1 Let G have region cover C. A(pgw,») (v, w))
Ic

< AMpg(v,w)) Yo, w € V, where pg(v, w) has the same
intersection sequence as p ,w) (v, w).
Ic

Particular interest deserves the case of the in-
equality of lemma 1 becoming an equality.

Lemma 2 All intersections of regions are assumed to
be singletons or having transition cost 0 from each
vertex to each other within the same intersection.
Then /\(pG(IUC,w)(v,w)) = AMpg(v,w)) Vo,w € V,
where pa(v,w) has the same intersection sequence as
g (v,w).

The sequence of classes traveled along by a path
Pgtow (v,w) is called induced trace and denoted by
Ic

ind(p (v,w)). The trace ind(pg(v,w)(v,w)) need
Ic

Gre™
not imply a shortest path p%(v,w) by simply using
this trace even in case C is shortest path closed. Short-
est path closedness for graphs with time independent
edge labels is the analog to fastest path closedness.
The reason for the intended implication to fail is that
transition costs within class intersections may sum up
to amounts which destroy the order of lengths of paths
in GY%"). However, this order will be maintained to a
sufficient degree under an additional ”discrimination”
or "filtering” condition. This condition will be pro-
vided by k-shortest paths, where the 1-shortest path is
the usual shortest path and a k-shortest path for £ > 2
is a shortest path among all paths longer than a k£ — 1-
shortest path. The length of a k-shortest path from v
to w in GY%™ is denoted by AP (v,w); F).

Theorem 3 (”Filtering for shortest paths in intersec-
tion graphs”)

Let pgo(v,w) be a shortest path among all those
having the same intersection sequence like one of the
k — 1-shortest or shorter paths pG(IuC,w)(v,w) and let

Apa,o(v,w)) <)\(pG(Ivc,w) (v,w); k) for some k > 2.

1. No path having an intersection sequence like one
of the k-shortest or longer paths from v to w in

G(Ivc’w) is shorter than pg o(v,w).

2. C being shortest path closed implies pgo(v,w) =
p% (v, w).

4.3.2 FASTEST PATHS

Edge labels of the intersection graph which
are lower bounds of the transition time of the
original graph can be improved by a refined con-
sideration of time dependency. Therefore, an
edge (voinc;,vcinc,) € FEzc receives the label
mintET minvoecmcj,woecmck ﬁ(pOG(’U07w07t)) Then
PP (v, wo; t)) > A(PL(vo,wp)), see section 2.1. The
filtering for shortest paths then extends to fastest
paths.

Theorem 4 (”Filtering for fastest paths in intersec-
tion graphs”)

Let pgo(v,w;t) be a fastest path among all those
having the same intersection sequence like one of the
k — 1-shortest or shorter paths p . (v,w) and let

I(pc,o(v, wit)) < Apge,w (v, w); k) Ijgor some k > 2.
Ic

1. No path having an intersection sequence like one
of the k-shortest or longer paths from v to w in
G(Ivc’w) is faster than pgo(v, w;t).

2. C being fastest path closed implies pg (v, w;t) =
P (v, w;t).

5 CONCLUSIONS

The core buisness of computing fastest paths in a
distributed manner is computation of traces. An ap-
proach for trace computation has been shown based
upon shortest path computation on the aggregated
structure.

Fastest paths can be used for distributed compu-
tation of passenger travel connections even in case of
other objectives, serving as lower bounds for transition
times.

REFERENCES

[1] Ahuja, R., Magnanti, T.L., Orlin, J.B., Net-
work flows, Prentice Hall, Englewood Cliffs,
1993.

2] Frederickson, G.N., Fast algorithms for short-
est paths in planar graphs, with applications,
SIAM Journal on Computing 6, 1987, p. 1004-
1022.

[3] Kampke, T., A separation decomposition for
orders, Networks 24, 1994, p. 185-194.

[4] Lawler, E., Combinatorial optimization net-
works and matroids, Holt, Rinehart and Win-
ston, New York, 1976.

[5] Martins, E.Q.V. et al., An algorithm for the
ranking of shortest paths, Furopean Journal of
Operational Research 69, 1993, p. 97-106.

[6] Martins, E.Q.V., Santos, J.L.E., A new short-
est paths ranking algorithm, manuscript, 1996.

[7] Mohring, R.H., Radermacher, F.J., Substi-
tution decomposition for discrete structures
and connections with combinatorial optimiza-
tion, Annals of Discrete Mathematics 19, 1984,
p. 257-356.

[8] Thulasiraman, K., Swamy, M.N.S., Graphs:
theory and algorithms, Wiley, New York, 1992.

